Exclusive Study of $(g-2)_{\mu}$ HVP

Aaron S. Meyer (ameyer@quark.phy.bnl.gov)

Brookhaven National Laboratory

September 23, 2019

Lattice X Workshop 2019 - BNL

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

<u>UC Boulder</u> Oliver Witzel

CERN

Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jigun Tu Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

Edinburgh University

Peter Boyle
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tadeusz Janowski
Julia Kettle
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
Tobias Tsang
Andrew Yong
Azusa Yamaguchi

<u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

MIT

David Murphy

<u>Peking University</u> Xu Fena

<u>University of Regensburg</u> <u>Christoph Lehner (BNL)</u>

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Outline

- ▶ Muon g 2 Experiment
 - ▶ Motivation from muon g-2
 - ▶ Tensions in $\pi\pi$ Scattering
 - Error Budget and LQCD Strategy
- Correlation Function Spectrum & Overlap
 - Lattice Parameters
 - GEVP Spectrum & Overlaps
 - \blacktriangleright $\pi\pi$ Scattering Phase Shift
 - 4π Correlation Functions
- Bounding Method and the Muon HVP
 - Correlation Function Reconstruction
 - ▶ (Improved) Bounding Method
 - Results
- Conclusions/Outlook

Introduction

Muon Anomalous Magnetic Moment Experiment

High-precision experiment of spin precession relative to momentum direction in storage ring

Anomalous frequency $\omega_{\it a}=rac{g-2}{2}rac{eB}{m}=a_{\mu}rac{eB}{m}$

Sensitive to new physics, and also discrepant with experiment!

Aaron S. Meyer Section: Introduction 3/35

Fermilab Muon g-2 Experiment

Experiment has come a long way (and so has theory!)

Aiming for a 4× improvement in uncertainty over the BNL result

Aaron S. Meyer Section: Introduction 4/35

Muon g-2 Theory Error Budget

Contribution	$Value\times\!10^{10}$	Uncertainty $\times 10^{10}$	
QED	11 658 471.895	0.008	=
EW	15.4	0.1	
HVP LO	692.5	2.7	}
HVP NLO	-9.84	0.06	>
HVP NNLO	1.24	0.01	
Hadronic light-by-light	10.5	2.6	
Total SM prediction	11 659 181.7	3.8	
BNL E821 result	11 659 209.1	6.3	
Fermilab E989 target		pprox 1.6	

Experiment-Theory difference is $27.4(7.3) \implies 3.7\sigma$ tension!

Aaron S. Meyer Section: Introduction 5/35

Tensions in Experiment

R-ratio data for $ee \to \pi\pi$ exclusive channel, $\sqrt{s}=0.6-0.9~{\rm GeV}$ region Tension between most precise measurements (BABAR/KLOE) R-ratio a_μ^{HVP} uncertainty < difference in this channel

Avoid tension by computing precise lattice-only estimate of a_{μ}^{HVP} Use lattice QCD to inform experiment, resolve discrepancy

Aaron S. Meyer Section: Introduction 6/35

Exclusive Channels in the HVP

Correlator has large statistical error in long-distance region, but contributions from high energy states are exponentially suppressed

Long distance correlator dominated by two-pion states, but overlap of vector current with two-pion states is minimal

Aaron S. Meyer Section: Introduction 7/35

Exclusive Channels in the HVP

Correlator has large statistical error in long-distance region, but contributions from high energy states are exponentially suppressed

Long distance correlator dominated by two-pion states, but overlap of vector current with two-pion states is minimal

Strategy:

- Construct & measure operators that overlap strongly with $\pi\pi$ states
- Correlate these operators with the local vector current
- ▶ a_{μ}^{HVP} computed by integrating with time-momentum representation kernel, $a_{\mu}^{HVP} = \sum_{t} w_{t}C(t)$ [D.Bernecker & H.Meyer, 1107.4388 [hep-lat]]

Aaron S. Meyer Section: Introduction 8 / 35

Computation Setup

Ensemble Details

Computed on 2+1 flavor Möbius Domain Wall Fermions for valance and sea, M_π at physical value on all ensembles

Computations using distillation setup

 24^3 and 32^3 ($+48^3$) ensembles \rightarrow infinite volume limit 48^3 and 64^3 ($+96^3$) ensembles \rightarrow continuum limit

Compare results of explicit calculation of finite volume results to Luscher + Gounaris-Sakurai prediction [H.Meyer, 1107.4388[hep-lat]]

Not presented here, see [C.Lehner, Lattice 2018]

Operators

Operators constructed in I=1, P-wave channel to impact upon HVP_μ

Designed to have strong overlap with specific target states, but all operators unavoidably couple to all states in HVP spectrum

Vector current operators:

▶ Local
$$\mathcal{O}_{J_{\mu}} = \sum_{\mathbf{x}} \bar{\psi}(\mathbf{x}) \gamma_{\mu} \psi(\mathbf{x}), \ \mu \in \{1, 2, 3\}$$

• Smeared
$$\mathcal{O}_{j_{\mu}} = \sum_{xyz} \bar{\psi}(x) f(x-z) \gamma_{\mu} f(z-y) \psi(y)$$

 2π operators with \mathcal{O}_n given by $\vec{p}_{\pi} \in \frac{2\pi}{I} \times \{(1,0,0),(1,1,0),(1,1,1),(2,0,0)\}$

$$\mathcal{O}_n = \left| \sum_{xyz} \bar{\psi}(x) f(x-z) e^{-i\vec{p}_{\pi} \cdot \vec{z}} \gamma_5 f(z-y) \psi(y) \right|^2$$

Also test two 4π operators with $\vec{p}_{\pi} = \frac{2\pi}{L} \times (1,0,0)$:

$$\mathcal{O}_{4\pi} = \left| \sum_{xyz} \bar{\psi}(x) f(x-z) e^{-i\vec{p}_{\pi} \cdot \vec{z}} \gamma_5 f(z-y) \psi(y) \right|^2 \left| \sum_{xy} \bar{\psi}(x) f(x-y) \gamma_5 \psi(y) \right|^2$$

Correlators arranged in a $N \times N$ symmetric matrix:

Generalized EigenValue Problem (GEVP)

Generalized EigenValue Problem to estimate overlap with vector current & energies

$$C(t) V = C(t + \delta t) V \Lambda(\delta t)$$

$$\Lambda_{nn}(\delta t) \sim e^{+E_n \delta t}$$
, $V_{im} \propto \langle \Omega | \mathcal{O}_i | m \rangle$

C(t) is the matrix of correlation functions from previous slide Compute at fixed δt , vary t: plateau for large t

From result, reconstruct exponential dependence of local vector correlation function

$$C_{ij}^{latt.}(t) = \sum_{i}^{N} \langle \Omega | \mathcal{O}_{i} | n \rangle \langle n | \mathcal{O}_{j} | \Omega \rangle e^{-E_{n}t}$$

In theory, infinite number of states contribute to correlation function In practice, only finite N necessary to model correlation function \implies finite GEVP basis is sufficient

GEVP Results - $J_{\mu} + 2\pi$ Operators only

6-operator basis on 48I ensemble: local+smeared vector, $4\times(2\pi)$

Data points from solving GEVP at fixed δt

$$C(t_0) V = C(t_0 + \delta t) V \Lambda(\delta t), \quad \Lambda_{nn}(\delta t) \sim e^{+E_n \delta t}$$

Excited state contaminations decay as $t_0, \delta t \to \infty$ moving right on plot \implies asymptote to lowest states' spectrum & overlaps

Statistics+systematics; Left: Spectrum; Right: Overlap with local vector current

Aaron S. Meyer Section: Computation Setup 13/35

Phase Shift

Compute $\pi\pi$ scattering phase shifts in $\mathit{I}=1$ channel from spectrum Statistics + systematics

Compare to simple Breit-Wigner parametrization and pheno (courtesy of M.Bruno) Good agreement with pheno for $32ID,\ 48I,\ 64I$

24ID: remnant excited state contaminations, still to be removed

Scattering phase shift results to appear as part of series of papers by RBC+UKQCD

Phase Shift

Compute $\pi\pi$ scattering phase shifts in $\mathit{I}=1$ channel from spectrum Statistics + systematics

Compare to simple Breit-Wigner parametrization and pheno (courtesy of M.Bruno) Good agreement with pheno for 32ID, 48I, 64I

24ID: remnant excited state contaminations, still to be removed

Scattering phase shift results to appear as part of series of papers by RBC+UKQCD

Aaron S. Meyer Section: Computation Setup 15/35

Group Theory & Contraction Engine

Group Theory & Contraction Engine

Group Theory & Contraction Engine

4π Contractions

4π Contractions cont...

4π Contractions cont... cont...

GEVP Results - 4π Operators

Extra 4π states could appear with overlap to local vector current Breakdown of formalism for FVC could occur at 4π threshold

Results unaffected by inclusion of 4π operators, but states resolvable

GEVP Results - 4π Operators

Extra 4π states could appear with overlap to local vector current Breakdown of formalism for FVC could occur at 4π threshold

Results unaffected by inclusion of 4π operators, but states resolvable

Overlap of 4π states with local vector current unresolvable

GEVP Results - 4π Operators

Extra 4π states could appear with overlap to local vector current Breakdown of formalism for FVC could occur at 4π threshold

Results unaffected by inclusion of 4π operators, but states resolvable

Overlap of 4π states with local vector current unresolvable

Overlap of states with 4π operator significant

- \implies 4π state safely negligible in local vector current
- \implies Will be neglected in all of following analysis

Aaron S. Mever

Correlator Reconstruction and Bounding

Correlation Function Reconstruction - 48I

Plotted: (weight kernel) imes (correlation function); integral o a_{μ}^{HVP}

GEVP results to reconstruct long-distance behavior of local vector correlation function needed to compute connected HVP

Explicit reconstruction good estimate of correlation function at long-distance, missing excited states at short-distance

More states \implies better reconstruction, can replace C(t) at shorter distances

Improved Bounding Method

Use known results in spectrum to make a precise estimate of upper & lower bound on a_{μ}^{HVP} [RBC (2017)]

$$\widetilde{C}(t; t_{\mathsf{max}}, E) = \left\{ egin{array}{ll} C(t) & t < t_{\mathsf{max}} \ C(t_{\mathsf{max}}) \mathrm{e}^{-E(t - t_{\mathsf{max}})} & t \geq t_{\mathsf{max}} \end{array}
ight.$$

Upper bound: $E \leq E_0$, lowest state in spectrum

Lower bound: $E \ge \log[\frac{C(t_{\text{max}})}{C(t_{\text{max}}+1)}]$

BMW Collaboration [K.Miura, Lattice2018] takes $E \to \infty$

With good control over lower states in spectrum from exclusive reconstruction, improve bounding method [RBC/UKQCD 2018 (CL@KEK Feb 2018)]:

Replace $C(t) o C(t) - \sum_{n}^{N} |c_n|^2 e^{-E_n t}$ and apply bounding procedure for $a_\mu - \delta a_\mu$

- \implies Long distance convergence now $\propto e^{-E_{N+1}t}$, lower bound falls faster
- ⇒ Smaller overall contribution from neglected states

After bounding, add back $\delta a_{\mu} = \sum_{t=t_{\max}}^{\infty} w_t \sum_{n}^{N} |c_n|^2 e^{-E_n t}$


```
No bounding method:  a_{\max}^{HVP} = 638(21)  Bounding method t_{\max} = 3.3 \text{ fm}, no reconstruction:  a_{\mu}^{HVP} = 626.5(8.6)  Bounding method t_{\max} = 3.0 \text{ fm}, 1 state reconstruction:  a_{\mu}^{HVP} = 626.5(8.6)  Bounding method t_{\max} = 2.9 \text{ fm}, 2 state reconstruction:  a_{\mu}^{HVP} = 627.5(7.7)  Bounding method t_{\max} = 2.2 \text{ fm}, 3 state reconstruction:  a_{\mu}^{HVP} = 628.0(4.2)  Bounding method t_{\max} = 1.8 \text{ fm}, 4 state reconstruction:  a_{\mu}^{HVP} = 626.2(3.9)
```

Bounding method gives factor of 3 improvement over no bounding method Improving the bounding method increases gain to factor of 5, including systematics Improvement should make all-lattice computation of a_{μ}^{HVP} competitive with R-ratio by 2020

Error Budget and Timeline

Update to RBC-UKQCD calculation including exclusive study in preparation

 \implies on target for precision improvement on a_{μ}^{HVP} at 5×10^{-10} level

Further reduction will require full RBC-UKQCD program of computations

Work on the exclusive channel study using bounding method has led to world-first estimation of finite volume corrections to $a_{\iota\iota}^{HVP}$ at physical M_π

Complete analysis with full suite of systematic improvements ongoing \implies precision improvement $\times 10$ over original, target error on $a_{\mu\nu}^{HVP}$ at 1×10^{-10}

Compare to dispersive $(3-5) \times 10^{-10}$

Conclusions

Conclusions

Pion scattering exlusive study poised to improve theory preicision in $(g-2)_{\mu}$:

- Dispersive approaches have unresolved tension in $\pi\pi$ scattering region, circumvented by LQCD calculation
- ► Computed $2\pi \to 4\pi$, $4\pi \to 4\pi$ correlation functions to show explicitly that 4π state has negligible effect on HVP at physical M_π
- Study of exclusive channels able to significantly reduce statistical uncertainty on an all-lattice computation of a_t^{HVP}
 - \implies expect to reach precision of $O(5 \times 10^{-10})$ by the end of year
 - \implies target $O(1 \times 10^{-10})$ for all-lattice calculation
- Part of ongoing lattice study to address all lattice systematics in RBC+UKQCD HVP computation (see [C.Lehner, Lattice 2019])
- ▶ New data on 64³ ensemble being analyzed
- Paper in progress; posting planned before end of year

Thank you!

Aaron S. Meyer Section: Conclusions 35 / 35

BACKUP

Error Budget

$a_{\mu}^{\text{ud, conn, isospin}}$	$202.9(1.4)_S(0.2)_C(0.1)_V(0.2)_A(0.2)_Z$	$649.7(14.2)_S$ $2.8)_C(3.7)_V(1.5)_A(0.4)_Z(0.1)_{E48}(0.1)_{E64}$
$a_{\mu}^{\text{s, conn, isospin}}$	$27.0(0.2)_S(0.0)_C(0.1)_A(0.0)_Z$	$53.2(0.4)_S(0.0)_C(0.3)_A(0.0)_Z$
a.c, conn, isospin	$3.0(0.0)_S(0.1)_C(0.0)_Z(0.0)_M$	$14.3(0.0)_S(0.7)_C(0.1)_Z(0.0)_M$
a uds, disc, isospin	$-1.0(0.1)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z$	$-11.2(3.3)_{\rm g}(0.4)_{\rm V}(2.3)_{\rm L}$
a QED, conn	$0.2(0.2)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z(0.0)_E$	$5.9(5.7)_{\rm S}(0.3)_{\rm C}(1.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(1.1)_{\rm E}$
$a_{\mu}^{\text{QED, disc}}$	$-0.2(0.1)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z(0.0)_E$	$-6.9(2.1)_S(0.4)_C(1.4)_V(0.0)_A(0.0)_Z(1.3)_E$
$a_{\mu}^{\text{uds, disc, isospin}}$ $a_{\mu}^{\text{QED, conn}}$ $a_{\mu}^{\text{QED, disc}}$ $a_{\mu}^{\text{QED, disc}}$ a_{μ}^{SIB} $a_{\mu}^{\text{udsc, isospin}}$	$0.1(0.2)_S(0.0)_C(0.2)_V(0.0)_A(0.0)_Z(0.0)_{E48}$	$10.6(4.3)_{S}(0.6)_{C}(6.6)_{V}(0.1)_{A}(0.0)_{Z}(1.3)_{E48}$
a udsc, isospin	$231.9(1.4)_S(0.2)_C(0.1)_V(0.3)_A(0.2)_Z(0.0)_M$	$705.9(14.6)_S(2.9)_C(3.7)_V(1.8)_A(0.4)_Z(2.3)_L(0.1)_{E48}$
		$(0.1)_{E64}(0.0)_{M}$
$a_{\mu}^{\text{QED, SIB}}$ $a^{\text{R-ratio}}$	$0.1(0.3)_S(0.0)_C(0.2)_V(0.0)_A(0.0)_Z(0.0)_E(0.0)_{E48}$	$9.5(7.4)_S(0.7)_C(6.9)_V(0.1)_A(0.0)_Z(1.7)_E(1.3)_{E48}$
$a_{\mu}^{\mathrm{R-ratio}}$	$460.4(0.7)_{RST}(2.1)_{RSY}$	
a_{μ}	$692.5(1.4)_S(0.2)_C(0.2)_V(0.3)_A(0.2)_Z(0.0)_E(0.0)_{E48}$	$715.4(16.3)_S(3.0)_C(7.8)_V(1.9)_A(0.4)_Z(1.7)_E(2.3)_L$
	$(0.0)_b(0.1)_c(0.0)_{\overline{S}}(0.0)_{\overline{Q}}(0.0)_M(0.7)_{RST}(2.1)_{RSY}$	$(1.5)_{E48}(0.1)_{E64}(0.3)_{b}(0.2)_{c}(1.1)_{\overline{S}}(0.3)_{\overline{Q}}(0.0)_{M}$

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10} . The left column lists results for the window method with $t_0 = 0.4$ fm and $t_1 = 1$ fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

[Blum et al., (2018)]

Full program of computations to reduce uncertainties:

Reduce statistical uncertainties on light connected contribution

Compute QED contribution

Improve lattice spacing determination

Finite volume and continuum extrapolation study

Aaron S. Meyer Section: BACKUP 37/35

First constrain the p-wave phase shift from our $L=6.22~\mathrm{fm}$ physical pion mass lattice:

 $E_{\rho} = 0.766(21) \text{ GeV (PDG } 0.77549(34) \text{ GeV)}$ $\Gamma_{o} = 0.139(18) \text{ GeV (PDG } 0.1462(7) \text{ GeV)}$

[Lehner, Mainz 2018]

Aaron S. Meyer Section: BACKUP 38 / 35

Predicts $|F_{\pi}(s)|^2$:

We can then also predict matrix elements and energies for our other lattices; successfully checked!

[Lehner, Mainz 2018]

Aaron S. Meyer Section: BACKUP 39/35

Finite Volume Corrections on the Lattice

Complete error budget needs extrapolation to infinite volume

FV shift can be measured directly from results of exclusive study

- \implies First time this shift resolved from zero at physical $M_{\pi}!$
- \implies Previous bound at 10(26) \times 10⁻¹⁰, $M_{\pi} = 146 \text{ MeV} [1805.04250[\text{hep-lat}]]$

Can compare FV shift predictions from phenomenological estimations:

Gounaris-Sakurai-Lüscher, proposed by H.Meyer

[Phys.Rev.Lett. 21, 244; Nucl.Phys.B 354; Phys.Rev.Lett. 107, 072002]

and scalar QED

$$a_{\mu}^{HVP}(L=6.2~{\rm fm}) - a_{\mu}^{HVP}(L=4.7~{\rm fm}) = \left\{ \begin{array}{cc} 21.6(6.3) \times 10^{-10} & \text{LQCD} \\ 20(3) \times 10^{-10} & \text{GSL} \\ 12.2 \times 10^{-10} & \text{sQED} \end{array} \right.$$

Good agreement with GSL in range of energies probed by LQCD

Aaron S. Meyer Section: BACKUP 40/35